Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biological invasions are profoundly altering Earth’s ecosystems, but generalities about the effects of nonnative species on the diversity and productivity of native communities have been elusive. This lack of generality may reflect the limited spatial and temporal extents of most previous studies. Using >5 million tree measurements across eastern US forests from 1995 to 2023, we quantified temporal trends in tree diversity and biomass. We then analyzed community-level changes in native tree diversity and biomass in relation to nonnative tree invasion and native species colonization. Across the entire eastern United States, native tree species richness decreased over time in plots where nonnatives occurred, whereas nonnative species richness and the biomass of both natives and nonnatives increased over time. At the community scale, native richness tended to decline following nonnative invasion, whereas native biomass and richness-independent measures of trait and phylogenetic diversity tended to remain stable. These patterns can be explained by the rarity of the displaced native species and their functional and phylogenetic similarity to native species that survived nonnative invasions. In contrast, native survivors tended to be functionally distinct from nonnative invaders, suggesting an important role for niche partitioning in community dynamics. Colonization by previously absent native species was associated with an increase in native richness (beyond the addition of native colonizers), which contrasts with declines in native richness that tended to follow nonnative invasion. These results suggest a causal role for nonnative species in the native richness decline of invaded communities.more » « lessFree, publicly-accessible full text available April 29, 2026
-
Societal Impact StatementForest ecosystems absorb and store about 25% of global carbon dioxide emissions annually and are increasingly shaped by human land use and management. Climate change interacts with land use and forest dynamics to influence observed carbon stocks and the strength of the land carbon sink. We show that climate change effects on modeled forest land carbon stocks are strongest in tropical wildlands that have limited human influence. Global forest carbon stocks and carbon sink strength may decline as climate change and anthropogenic influences intensify, with wildland tropical forests, especially in Amazonia, likely being especially vulnerable. SummaryHuman effects on ecosystems date back thousands of years, and anthropogenic biomes—anthromes—broadly incorporate the effects of human population density and land use on ecosystems. Forests are integral to the global carbon cycle, containing large biomass carbon stocks, yet their responses to land use and climate change are uncertain but critical to informing climate change mitigation strategies, ecosystem management, and Earth system modeling.Using an anthromes perspective and the site locations from the Global Forest Carbon (ForC) Database, we compare intensively used, cultured, and wildland forest lands in tropical and extratropical regions. We summarize recent past (1900‐present) patterns of land use intensification, and we use a feedback analysis of Earth system models from the Coupled Model Intercomparison Project Phase 6 to estimate the sensitivity of forest carbon stocks to CO2and temperature change for different anthromes among regions.Modeled global forest carbon stock responses are positive for CO2increase but neutral to negative for temperature increase. Across anthromes (intensively used, cultured, and wildland forest areas), modeled forest carbon stock responses of temperate and boreal forests are less variable than those of tropical forests. Tropical wildland forest areas appear especially sensitive to CO2and temperature change, with the negative temperature response highlighting the potential vulnerability of the globally significant carbon stock in tropical forests.The net effect of anthropogenic activities—including land‐use intensification and environmental change and their interactions with natural forest dynamics—will shape future forest carbon stock changes. These interactive effects will likely be strongest in tropical wildlands.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage—e.g., CO2fertilization—and negative drivers that decrease it—e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance–regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress.more » « less
-
Despite experimental and observational studies demonstrating that biodiversity enhances primary productivity, the best metric for predicting productivity at broad geographic extents—functional trait diversity, phylogenetic diversity, or species richness—remains unknown. Using >1.8 million tree measurements from across eastern US forests, we quantified relationships among functional trait diversity, phylogenetic diversity, species richness, and productivity. Surprisingly, functional trait and phylogenetic diversity explained little variation in productivity that could not be explained by tree species richness. This result was consistent across the entire eastern United States, within ecoprovinces, and within data subsets that controlled for biomass or stand age. Metrics of functional trait and phylogenetic diversity that were independent of species richness were negatively correlated with productivity. This last result suggests that processes that determine species sorting and packing are likely important for the relationships between productivity and biodiversity. This result also demonstrates the potential confusion that can arise when interdependencies among different diversity metrics are ignored. Our findings show the value of species richness as a predictive tool and highlight gaps in knowledge about linkages between functional diversity and ecosystem functioning.more » « less
-
Climate change is intensifying the fire regime across Siberia, with the potential to alter carbon combustion and post‐fire carbon re‐accumulation trajectories. Few field‐based estimates of fire severity (e.g., carbon combustion and tree mortality) exist in Siberian larch forests (Larixspp.), which limits our ability to project how an intensified fire regime will affect regional and global climate feedbacks. Here, we present field‐based estimates of fire‐induced tree mortality and carbon loss in eastern Siberian larch forests. Our results suggest that fires in this region result in high tree mortality (means of 83% and 76% at Arctic and subarctic sites, respectively). In both absolute and relative terms, aboveground carbon loss following fire is higher in Siberian larch forests than in North America, but belowground carbon loss is considerably lower. This suggests fundamental differences in wildfire behavior and carbon dynamics between dominant vegetation types across the boreal biome.more » « less
-
Abstract. Climatic extreme events are expected to occur more frequently in the future, increasing the likelihood of unprecedented climate extremes (UCEs) or record-breaking events. UCEs, such as extreme heatwaves and droughts, substantially affect ecosystem stability and carbon cycling by increasing plant mortality and delaying ecosystem recovery. Quantitative knowledge of such effects is limited due to the paucity of experiments focusing on extreme climatic events beyond the range of historical experience. Here, we present a road map of how dynamic vegetation demographic models (VDMs) can be used to investigate hypotheses surrounding ecosystem responses to one type of UCE: unprecedented droughts. As a result of nonlinear ecosystem responses to UCEs that are qualitatively different from responses to milder extremes, we consider both biomass loss and recovery rates over time by reporting a time-integrated carbon loss as a result of UCE, relative to the absence of drought. Additionally, we explore how unprecedented droughts in combination with increasing atmospheric CO2 and/or temperature may affect ecosystem stability and carbon cycling. We explored these questions using simulations of pre-drought and post-drought conditions at well-studied forest sites using well-tested models (ED2 and LPJ-GUESS). The severity and patterns of biomass losses differed substantially between models. For example, biomass loss could be sensitive to either drought duration or drought intensity depending on the model approach. This is due to the models having different, but also plausible, representations of processes and interactions, highlighting the complicated variability of UCE impacts that still need to be narrowed down in models. Elevated atmospheric CO2 concentrations (eCO2) alone did not completely buffer the ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings highlight the consequences of differences in process formulations and uncertainties in models, most notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic schemes, in projecting potential ecosystem responses to UCEs. We provide a summary of the current state and role of many model processes that give way to different underlying hypotheses of plant responses to UCEs, reflecting knowledge gaps which in future studies could be tested with targeted field experiments and an iterative modeling–experimental conceptual framework.more » « less
An official website of the United States government
